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A B STRACT 

This report presents an experimental verification of Womersley's method 
for the calculation of instantaneous flow rate in a pulsating incompressible flow 
from the measured instantaneous longitudinal pressure gradient in rigid pipes. 
The method of computation is applicable to any complex flow pulse. The experi- 
mental flow generation was  based on fluidic and peristaltic pumps producing a 
variety of pulsatile and oscillatory flows having finite mean flow rates .  Digital 
computer calculations of instantaneous flow rates  were in good agreement with 
measured data. The instantaneous phase angle between pressure and flow was 
also investigated and was  found to be a function of the pipe Stokes number. 
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. AN EXPERIMENTAL STUDY OF PULSATING FLOW OF 
INCOMPRESSIBLE VISCOUS FLUIDS I N  RIGID PIPES 

I N  THE INTERMEDIATE DAMPING RANGE 

SUMMARY 

This report  presents an experimental verification of Womersley's method 
for  the calculation of instantaneous flow rate in  a pulsating incompressible flow 
from the measured instantaneous longitudinal pressure  gradient in rigid pipes. 
The method of computation is applicable to any complex flow pulse. The experi- 
mental flow generation was based on fluidic and peristaltic pumps producing a 
variety of pulsatile and oscillatory flows having finite mean flow rates. Digital 
computer calculations of instantaneous flow rates were in good agreement with 
measured data. The instantaneous phase angle between pressure  and flow was 
also investigated and was found to be a function of the pipe Stokes number. 

INTRODUCTION 

The study of modern hydraulic control systems demands adequate knowl- 
edge of transient viscous flow in pipes and valve components. In particular,  it 
is important to know the instantaneous relationship between pressure and fluid 
velocity in oscillating or pulsating viscous incompressible pipe flows. 

While the topic of steady viscous pipe flow has received attention from 
numerous experimenters for more than a century, the study of pulsatile viscous 
pipe flow has been pursued with significant success  only since 1928. The appli- 
cation of Reynolds number similarity to steady pipe flow is now classical, but 
the analogous application of Stokes number similari ty to oscillating pipe flow is 
still not generally known. 

The studies of Grace [ I] in 1928 involved the equations of motion, velocity 
profile, and phasing of pulsating flow. Considerable work has followed, and the 
number of independent studies has increased exponentially to the present. 



The cardiovascular system of the body is vividly pulsating in  nature, 
In this respect, much of the pulsatile flow knowledge that exists today has 
evolved from the study of blood flow. Several individuals have instrumented 
the arteries of animals in  an attempt to gain an understanding of the circulation 
system. The collaborated works of McDonald [ 2 1 
[ 3j , a mathematician, a r e  particularly noteworthy, serving as a guide for  this 
project . 

a physiologist, a& Worr;ers!ej; 

The work of Womerley in  1955 stands out as a significant analytical 
approach for the computation of the velocity profile and instantaneous flow rate 
in pulsating flow. Linford and Ryan [ 41 , among other workers ,  using a recip- 
rocating piston pulse generator,  were successful in 1965 in matching theory with 
experimentation. The research  involved verification of both instantaneous flow 
rate and the more difficult velocity profile for  the case of zero  mean flow dis- 
charge. This study has had a s imilar  objective dealing only with flow rate but 
involving a wide variety of pulse shapes having finite mean flow rates. Because 
of the nonlinearity of the Navier-Stokes equations, the superposition of a steady 
flow affects the periodic terms.  

For two pipe flows of equal L / D  ratio at a very small  Mach number to 
be equivalent in both steady and dynamic states, the Reynolds number, the 
acoustic Reynolds number, and the Stokes number must be equal. This 
similari ty law can be derived from dimensional analysis and was demonstrated 
for pipe flow by Goldschmied [ 51. The Stokes number was shown to have the 
characterist ics of a dynamic damping index and classifies dynamic fluid flow 
into regimes in regard to dynamic conditions. Three regimes can be identified 
by the Stokes number. The high-damping regime comprises the range from 
steady-state flow ( S  = 0) up to S = 10. The intermediate-damping regime com- 
pr i ses  the Stokes number range from 10 to 1000; most practical applications 
fall in this region. The low-damping regime comprises the Stokes number range 
above 1000. 

TH EOR Y 

Womersley in his analysis of pulsating flow applied a technique which made 
possible the expression of a complex wave shape in t e rms  of the Fourier series. 
In so doing, a pressure gradient wave can be expressed as the sum of a mean 
and a series of sinusoidal components ( the harmonics of the series). Womersley 
solved the Navier-Stokes equation for one-dimensional flow by assuming a 
sinusoidal pressure gradient. This approach allows the computation of 

. 

2 



. 

instantaneous flow rate for any complex pulse on a term-by-term basis,  
the sum of which being the resultant flow wave. Each element of the sum 
can be thought of as an individual flow problem in its own right having its own 
amplitude, frequency , and phase. 

Womersley based his original development on the one-dimensional Navier- 
Stokes equation for laminar pulsatile flow of an incompressible, Newtonian fluid. 

Equation I , which may be found in Schlichting ( 6 )  , applies where tangential 
and radial  components of velocity a r e  zero and where the axial velocity component 
is independent of the axial station. The pressure  gradient was assumed to be the 
following simple harmonic function to facilitate a solution of the above, 

- = real (KBIWt) = M cos(wt + +) ax 

Similarly, flow velocity may be expressed as a harmonic function 

iot v = ue (3 )  

where u is a function of radial station. Substitution of equations 2 and 3 into 

equation 1 and insertion of the dimensionless radial coordinate, y = - , result  
in a form of Bessel 's  equation, 

r 
R 

where a nondimensional characteristic parameter ,  a, proportional to the square 
root of Stokes number, SI was introduced for  convenience. 

3 



Solution of equation 4 may be obtained by utilizing the boundary condition u = 0 
at y = I to achieve the fn!!mir?g resul t  w i t t e n  iii ternis of Eessei functions 
of the first kind of order  zero. 

Upon returning to the original velocity notation, flow rate may be equated to 
the integral of velocity over the entire c ross  section of the tube. 

25 (i'/'a!) 
R 

& = $  v r d r  = 7 7rKR4 [i - eiwt 
la! I.1 

0 
(7) 

Womersley then chose to express  the complex Bessel functions in the form of 
modulus and phase. 

Equations 8 and 9,  a s  well a s  the right hand side of equation 2 ,  may be substituted 
into equation 7 to yield the following expression. 

The following definitions may then be assigned. 
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M' = k in2  6 + ( k -  cos k 

(13)  tan tz = sin 6/ (k - cos 6) 

Tables of M'/(u2 and E: have been compiled by Womersley for values of a! from 
zero  to ten and are given as a computational aid in the appendix to this report. 
Womersley derived asymptotic expressions for M' and E when a! is greater  than 
ten or the Stokes number is approaching 1000. 

a 1 19 
+ 2 +  a Z 3  

E =  
a! 

The asymptotic expressions apply to the "low-dampingtf flow regime discussed 
by Goldschmied [ 51 . For a! greater than twenty (Stokes number , S > 1600) , 
MI may be equated to one and E may be equated to zero without appreciable 
loss of accuracy. This corresponds to  a "zero-damping" o r  acoustic regime 
which is commonly treated by inviscid acoustic theory. Substitution of equations 
11, 12, and 13 into equation 10 and the use of the relationships A = M cos cp 
and B = M sin + result  in the final form for calculation of time dependent flow 
rate  for  the nth harmonic. 

+ A COSE + B s i n e  ( n n n n  

The steady, mean flow may be written according to Poiseuille's law. 
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Summing the steady and pulsating flows results in the total instantaneous flow 
rate - the object of this derivation: 

Q = l+f  - Q,' 
Q O  

n 
WO n= 1 

EXPERIMENTAL APPARATUS AND PROCEDURE 

. 

Figure I is a schematic representation of the experimental apparatus. 
The tes t  section consisted of a straight rigid copper tube having a diameter of 
I. 11 cm (7/16 in . )  and approximate length of 6 m ( 2 0  f t ) .  Eleven pressure 
taps were soldered normal to the tube axis at 0.3048 m (1 ft)  intervals with a 
liberal  untapped margin of several  meters  at  either end. A variable reluctance 
dc output pressure transducer was rated at k3.44 N/cm2 ( 5  psi) differential 
p ressure  with a frequency response of 1000 Hz. The flow rate instrumentation 
consisted of an electromagnetic flow meter with a 0 . 9 5 2  cm (3/8 in. ) diameter 
transducer. Frequency response was variable and could be selected by the 
operator at a maximum of 150 Hz.  A calibration of the measured flow pulse 
was performed using the digital computer for  each run by applying the timed 
volumetric measurement to the mean of the flow pulse. 

Water  was used exclusively as the fluid medium. The test system was 
designed to  operate as a closed o r  an open fluid system. A s  a closed system, 
constant equal pressure heads could be maintained at both reservoi r  and 
receiver.  A s  an open system, it was possible to obtain mean flow measurements 
through an overflow spill neck in  the receiver tank which emptied into a graduated 
receptacle for timed volumetric measurements. 

Two artificial heart  pumps, an electric motor-driven heart  pump (Fig.  2) 
and a fluidic compressed air-driven heart  pump (Fig.  3 ) ,  were employed as 
pulsating flow generators. The construction and operation of both pumps are 
fully described by Goldschmied, Prakouras,  and Nelson [ 71 . 
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The peristaltic pump functions by pushing the fluid medium through a 
distensible tubing lying in a circular track under the influence of a pair of 
ro l le rs  which bear on and collapse the distensible tubing as they t raverse  its 
length, The approximate maximum flow output and frequency are 49 cms 
(3 in. s, per second and 5 Hz, respectively. The latter parameters are variable 
according to rol ler  pressure and motor speed, but in all cases  they produce a 
near  sinusoidal flow pulse. 

The fluidic pump was developed at the University of Utah from a design 
pioneered by the U. S. Army's Harry Diamond Laboratories. The pump is 
based on a pneumatic fluidic amplifier which alternately fills and evacuates a 
soft Silastic ventricle within a b ra s s  housing. Bicuspid Daggett valves at 
water intake and discharge ports a r e  features of the pump design. The fluidic 
pump used during this experiment was limited in frequency to the range of 
I to 3 Hz. Pumping capacity, with equal filling and static heads of 0.3048 m 
(I f t )  of water,  ranged from 24.6 to  115 cms (1 .5  to  7 in. ') per second. 

Pressure  gradient measurements were taken at pressure taps 1.22 and 
I. 525 m ( 4  and 5 f t )  apart  along the test section to accommodate the convenient 
measuring range of the pressure transducer, Other spacings were also tried 
for  differential pressure measurements, resulting in no appreciable difference 
in differential pressure per meter length. 

The two pumps were operated over their ranges of performance to 
obtain variation in the parameters,  frequency, mean flow, and wave shape. 

Water temperature, a cri t ical  parameter affecting viscosity, was 
monitored frequently during tests. Water pressure heads of 0.3048 m were 
maintained at both reservoir  and receiver tanks. 

EXPERIMENTAL AND COMPUTED RESULTS 

A summary of the experimental program performed herein is presented 
in Table I and illustrated graphically in Figures 4 through 25. The results are 
presented in order  of increasing Stokes number, where the frequency is the 
fundamental pulsating o r  oscillating frequency. An additional parameter,  the 
effective Reynolds number, is based on the measured mean flow ra te ,  i. e. , 
the average pumping rate. 
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TABLE I. EXPERIMENTAL PROGRAM 

tun 
JO. 

Stokes Effective Plilse Mean Figurc 
No. S Reynolds Frequency, Flow Rate, No. 

No. I Reo f (Hz) Qo 
cm3/s (em) 

L 1 

6 
7 
8 
9 
!O 
!l 
L2 
13 
L4 
15 
L6 
17 
18 
19 

1 870 1556 
2 1089 2033 
3 1347 2538 
4 1597 2819 
5 2078 4143 

687 
758 
803 
837 
872 
902 

1009 
1039 
1353 
1648 
1724 
1782 
2050 
2112 

1.27 15.40 (0.245) 4 
I. 59 20.05 (0.318) 5 

2.33 27.80 (0.441) 7 
1.96 25.00 (0.397) 6 

3.03 40.80 (0.648) 8 

Fluidic P 

20 
21 
22 

8939 
2787 

10 826 
944 5 
5535 
2324 

10 135 
2107 
2798 
2051 
3842 
1923 
2070 
234 5 

77 0 0.214 0 23 
778 0 0.169 0 24 

1774 0 0.309 0 25 
A 

I. 00 
1.09 
1.22 
I. 19 
I. 25 
I, 32 
I. 43 
I. 52 
1.89 
2.44 
2.44 
2.63 

3.13 

1 , 3.20 

88.20$( 1.398) 
27.00, ( 0.429) 
l l . O O ; (  1.765) 
90.70,(1.442) 
53.7 (0.851) 
22.90 (0.364) 
97.00 (1.538) 
20.80 (0.330) 
26.40 (0.419) 
22.55 (0.358) 
36.80 (0.583) 
19.25 ( 0.305) 
21.85 { 0.347) 
23.5 (0.373) 

- 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

8 
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The measured pressure gradient, measured flow rate, and calculated 
flow rate are depicted over one complete cycle for each tes t  run. The method 
of Womersley, as described ear l ier ,  was utilized in obtaining calculated flow 
pulses. A digital computer program was compiled in Fortran IV to fit the 
measured pressure gradient with a Fourier series, Flow rate was then com- 
puted on the basis of each harmonic of the series, and the individual solutions 
were summed to obtain the resultant calculated flow rate depicted on each plot. 

The flow wave shapes obtained with the peristaltic pump were irregular 
to near sinusoidal. Verificaticn of the theoretical method of Womersley was 
achieved in t e rms  of phase and amplitude. Note that the shapes of the flow 
pulses are not evident by inspection of the corresponding pressure gradient 
pulses. High frequency transients occurred throughout pressure gradient 
measurements. A considerable portion of the gradient pulse is negative even 
though no flow reversa l  was either calculated o r  measured. Most of these 
comments apply equally as well to experimental test runs obtained using the 
fluidic pump where a close correlation of theory and experiment was achieved. 

Phase angles between pressure gradient and flow pulses are, a s  before, 
difficult to assess  because of highly fluctuating data, The pressure gradient 
pulse may, however, be seen to be clearly leading the flow pulse in all cases; 
thus, fluid inertia has been demonstrated. A pressure pulse is depicted in 
Figure 11 and may be seen to be similar in shape to the gradient pulse. Mean 
values corresponding to steady flow conditions have been noted on all figures. 
Experimental data, collected by Linford and Ryan [ 41 in an ear l ie r  investigation 
using a reciprocating piston, have been utilized ae an additional criterion. Three 
representative runs ,  presented graphically in Figures 23, 24, and 25, have 
yielded the same correspondence of theory and experiment demonstrated by 
Linford. The experimental data presented here a r e  based on the work of 
Zumbrunnen [ 81 at the Fluid Control Systems Laboratory of the University of Utah. 

DISCUSSION 

Mean Flow Pressure Gradient 

Initially, difficulty was encountered during computations in acquiring a 
correspondence in the mean levels of calculated and measured flow. Investigation 
revealed a virtually uncorrectable laboratory measuring problem. The magnitude 
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of the pressure gradient ( the mean) necessary to maintain the steady flow 
component was very small  in comparison with the oscillatory components, 
Test  run 13 (Fig. 16), for example, requires a pressure gradient mean of 
only 0.00628 (N/cm2) m-' ( 0. 0028 psi/ft) to maintain its mean flow of 20.8 cmS/s 
(0.3295 gpm) ; whereas the oscillations in pressure gradient were twc! nrders 
of magnitude greater.  In selecting instrumentation scale factors,  the mean 
gradient was unavoidably lost, This problem has been cited by both McDonald 
[ 21 and Rudinger [ 91 . The only alternative was to superimpose the oscillatory 
components of the pressure gradient, as defined by the harmonics of the Fourier 
series, onto the measured mean level such that the measured mean level becomes 
the reference. This analysis has followed such a procedure. 

Phase Angle between Pressure Gradient and Flow 

The phase angle between pressure gradient and flow may be shown to be 
a function of the Stokes number alone for sinusoidal oscillations; this relationship, 
attributed to Womersley, is shown in Figure 26. The experimental points have 
been obtained from the work of Linford and Ryan [ 41 and Sarpkaya [ 101 ; in both 
cases ,  the flow oscillation was sinusoidal, but with different upper Stokes num- 
ber limits, i . e . ,  2350 in the former  and 280 in the latter. It has  not been pos- 
sible to show the phase angle for the pulsatile flow of the present experimental 
program because of the i r regular  and co'mplex pulse shapes. 

Limit  of Applicabil ity of Viscous Flow Theory 

The present theory is based on the equation for time-dependent incompres- 
sible viscous flow. A s  such, the theory will not be applicable to large Reynolds 
numbers and Stokes numbers when the flow is turbulent and the damping negligible. 
The problem is.to estimate the practical limit of engineering applicability of 
the viscous the6ry in te rms  of Reynolds number, Stokes number, and amplitude 
of oscillation o r  pulsation. While the cri t ical  Reynolds number for steady flow 
is accepted to be approximately 2000, it has been shown by Sarpkaya [ 101 that 
for sinusoidally oscillating flow the cri t ical  Reynolds number is a function of 
the Stokes number and of the amplitude ratio. This dependence is presented 
in Figure 27, reproducing the data of Figure 10 of Reference IO. A t  each 
Stokes number, there is a definite maximum for the cri t ical  Reynolds number 
at some value of the amplitude ratio. It is immediately apparent that laminar/ 
turbulent transition could be delayed up to a Reynolds number well over 5,000 

10 
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by the proper combination of Stokes number and oscillatory amplitude because 
transition occurs much later than indicated by the stability criterion. In the 
present experimental program, runs 8, 9, and 12 with Reynolds numbers of 
10, 826, 9445, and 10,1.35. show excellent agreement between experimental 
flow and calculated flow and prove that the present viscous theory is certainly 
applicable from the operational engineering approach to an effective Reynolds 
number of 10,000 and a Stokes number of I, 000. 

CONCLUSIONS 

The correspondence of measured and calculated flow rate provided 
verification of Womersley 's method for the computation of instantaneous flow in 
an incompressible fluid. The limits of applicability remain undefined beyond 
the test range. Highly fluctuating experimental pressure gradient data have 
had little effect on calculated flow under the conditions of this experimentation. 
The analytical method is considered to be limited to cases where mean flow 
rate  is a known quantity for practical reasons since the mean pressure gradient 
in  most cases will not be distinguishable because of instrumentation limitations. 
A digital computer is deemed almost essential to flow computations by the 
method of Womersley. The complete Fortran computer program a s  used herein 
is given in the appendix. 
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FIGURE 2. FLUIDIC HEART PUMP WITH COVER REMOVED 

FIGURE 3.  PERISTALTIC HEART PUMP 
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FIGURE 21. RUN 18. MEASURED PRESSURE GRADIENT, 
MEASURED FLOW RATE,  AND COMPUTED FLOW RATE USING 

E F F E C T I V E  REYNOLDS NUMBER 2070; PULSE FREQUENCY 3 .20  Hz 
FLUIDIC HEART PUMP. STOKES NUMBER 2050; 

40 

30 

2o u) 
\ 
rr) 
E 

IO 0 

0 

-10 

2 .o 

1.5 

1.0 T 
E 
n 

z o u  

-. 5 

-1.0 

31 



2.0 

.o 

- I  .o 

n c * ' 
m 
Q 

X 

Q 

.50 .- 
Y 

P 
7 .o 

2 .o 

I .5 

1.0 TE 
cu" 
E .50 0 

2 
0 -  

-.5 

- 1.0 

\ 

TIME IN CYCLE, wt  (radians) 

FIGURE 22. RUN 19. MEASURED PRESSURE GRADIENT, 
MEASURED FLOW RATE,  AND COMPUTED FLOW RATE USING 

EFFECTIVE REYNOLDS NUMBER 2345; PULSE FREQUENCY 3.13 HZ 
FLUIDIC HEART PUMP, STOKES NUMBER 2112; 

32 



5.0 

2.5 

.O 

-2.5 

-5.c 

C 

1 -.OlC W 

e a 

-.02c 
2n 

TIME IN CYCLE, wt  (radians) 

FIGURE 23. RUN 20. MEASURED PRESSURE GRADIENT, 
MEASURED FLOW RATE,  AND COMPUTED FLOW RATE USING 

PULSE FREQUENCY 0.214 Hz 
LINFORD EXPERIMENT DATA. STOKES NUMBER 77; 

33 



.O 

w x  

2 -.002 
a ?  
a W 

Q, 

-.004 
0 

30 

20 

IO 

0 

-10 

-20 

.004 

.002 

0 

-.002 

- -.004 
\ & 

- -.006 

- -.008 

2n 
TIME IN CYCLE, w t  (radians) 

FIGURE 24. RUN 21. MEASURED PRESSURE GRADIENT, 
MEASURED FLOW RATE,  AND COMPUTED FLOW RATE USING 

LINFORD EXPERIMENTAL DATA. STOKES NUMBER 
778; EFFECTIVE REYNOLDS NUMBER 0; PULSE FREQUENCY 0.169 Hz 

cn 
\ 
M 
E 
0 

- 
'E 
h 

. 

34 



- 300 

FIGURE 25. RUN 22. MEASURED PRESSURE GRADIENT, 
MEASURED FLOW RATE,  AND COMPUTED FLOW RATE USING 

LINFORD EXPERIMENTAL DATA. STOKES NUMBER 1774; 
PULSE FREQUENCY 0 .309  Hz 

e 

200 

- 
MEASURED - 
CALCULATED -- 

- 

100 
u) 
\ 
0 
E 
0 

0 

-100 

-200 

.15 

.IO 

.05 

'E 0 
h 

-.05 "E 
0 
\ 
1 -.IO 

-.15 

-.20 

35 



.J I I 

I 0 o1 I t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Q Q 

4 
? 

\ 
C 

a! 

Q 
Q 

2 Q 

$ U 0 -J 

c 
W e 
0 w 
I 
I- 



c 

, 0 0 0 0 0 
0 0  

Q 
d. rr) 

O 8  O U 3  
O d .  10 

P 
a a 

5 

t 

* 
t 

0 
A 
W > 

C138WnN SalONA3t l  
lW311 I &I3 

37 



APPENDIX - FORTRAN COMPUTER PROGRAM 

Macro Flow Char t  of Digital Computer Program 
and Subrout ines 

/READ IN: Tables of a ,  M'/(Y*, e from Table R, F, 
y ,  p ,  .measured Be, accuracy, number of data points, limit 
on number Fourier harmonics, measured pressure gradient 
and flow rate pulses. 

1 
COMPUTE: S, a ,  p ,  Re, andinterval 
between data pofnts. 

CALL CLBRTE + 
c I i 

COMPUTE: Integrate flow pulse to obtain mean and 
equate to measured mean. Apply scale factor to 
reference scale  to calibrate flow wlse .  

I 

I 

CALL FOURR 

- I 
COMPUTE: Fourier coefficients by trapezoidal 

I integration of pressure gradient pulse. Fourier 
representation of measured pressure gradient and 
compare point by point with measured actuals. 

Had either specified accuracy 

number of Fourier harmonics. 
been achieved o r  limit hit on 

Perform linear interpolation 
of tables for M ' / d  and E .  

COMPUTE: M' and E 

by Womersley's 
asymptotic formulas. 

I 

COMPUTE: Flow pulse of each 

and sum with mean flow rate.  
- harmonic by Womersley's method * 

PRINT: Inputs except tables. S. Re, p .  angle in 

pulse, pressure gradient representation, calibrated 
measured flow rate.  and calculated flow rate. 
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Table of Parameters 
The following table gives amplitude parameters and phase angle comple- 

ments fo r  frequency parameters from zero t o  ten, 

11.46 
11.37 
{ I  28 
I I  21 
11.14 

11.08 
10.08 
1001 
104U 
10.77 

10.70 
1 0 * a  
1O~fJtl 
1040 

10.36 
10.20 
1042 
10.16 
10.10 

10*0( 
Y.07 
Y.01 
0*86 
0.70 

8-18 
0.88 

9-68 
0.61 

0.46 
0.40 
0.34 
u.29 
9.24 

8-18 
9.13 
0.68 
0.03 
8.1 

8.93 
8.88 
8.84 
8-70 
6-74 

8-60 

10-41 

osea 
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Fortran I V  Program of Womersley's Method 

BIUFTC MAIN 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

H M ZUMIJHUNNEN **** WOYCHSLEYS SOLUTION FOR INCOMPRESSIDL€ PULSATILE FLOW **** 
A = COEFFICIENT OF FOURIER SERIES 
ACC = ACCUIIACY OF FOURIER REPtESFNTATION 
ALPHA, AL = FREQUENCY PARAMETER 
AZEHO = CONSTANT (MEAN) OF FOURIER SERIES 
U = COEFFICIENT OF FOURIER SERIES 
CALCQ = CALCULATE0 FLOW RATE (CU IN)/SEC 
DELP = MEASURED PRESSURE GRADIENT (PSI/XFT) 
DELPF = FOURIER REPRESENTATION OF PRESSURE GRADIENT ( P S I I F T r  
DENS = DENSITY OF FLUID MEDIUM LF\S/(CU FT)  
DOMLGT = IIJCHEMENT UETWEEN DATA POINTS (RADIANS) 
EPSILtJ, EP = PHASE ANGLE COMPLEMENT (RADIANSPDEGPEES) 
FMPOASI FMP = AFlPLITUOE FACTOR 
FMU = DYNAMIC VISCOSITY (LB SEC)/(SQ FT) 
FREO = PULSE FREQUENCY (CPS) 
L = MAXIMUM ALLOWABLE NUMBEH OF FOURIER TERMS 
M = NUMHER OF DATA POINTS 
OMLGT = ANGLE I N  CYCLE (RADIANS) 
WBAH = MEACJUHEU MEAN FLOW RATE (GPM) 
RAD = TEST SECTION HAOIUS (FT)  
RHO DENSITYIGRAVITY SLUGS/(CU F T )  
RNdAR = RE YNOLOS PiUMUER FOR EQUIVALENT STEADY FLOW 
S = STOKES NUFX3ER OF FIRST HARMONIC 
TXPO = EXPkHIWENTAL FLOW RATE (CU IN)/SEC 
XFT = DISTANCE BETWEEN PRESSURE MEASUREMENT LOCATIONS (FT)  
XPQ = UIJCALIBHATED EXPERIMENTAL FLOW RATE (CU UNITS)/SEC 
DIMEFISION A L ~ ~ ~ ~ ~ ~ F M P ~ ~ ~ ~ ~ ~ E P ~ ~ O ~ ~ ~ A ~ ~ O ~ I ~ ~ ~ O ~ ~ ~ E L P ~ ~ O O ~ ~  

REAU 41 ( A L ( I ) t  I = l r 2 0 1 )  
HEAD 41, (FMP(1) v 1 = 1 ~ 2 0 1 )  
REAO 41 ( E P ( I ) ,  I = l r 2 0 1 )  

REAU 5,  XFTI A C C t  M t  L 
READ 7 t  (DELP(1 ) r  1=1,M) 
READ 7 r  ( X P Q ( I ) ,  I = l , M )  
DO 19 I = 1vFl 

1 FMPOAS(50)rEPSILN(50),  DELPF(5O)t  TXPQ(1OO)e XPO(100) 

27 HEAD 2, RAD, FHEQI DENS, FMUI QBAR 

19 DELP(1) = DELP( I ) /XFT  
TM = M 
DOMEGT = 2**3*141593/TM 

S = 8**3.141593*RAD*RAD*FREQ*RHO/FMU 

RNUAR = 2o*RH0~80AR/~1410014*RAD*FMU) 

HtiO = OEfIS/32*174 

ALPtiA = RAO*SQRT((6.283184*FREQ*PHO)/FMU) 

PHINT 22 
PKINT 99, HAD,FREQ,HWOIDENS,FMU 
PRIFIT 23 
PRINT 98, ODARiRNBAHvALPHA,S 
C A L L  CLBRTE(M,DOMEGT~,XPQtTXPQ,QRAR,100,FREQ) 
C A L L  F O U H R ( D O K E G T , A C C I M I N I D E L P I A Z E R O , A , D , D E L P F ~ L ~ ~ ~ O ~ ~ ~ )  
QZEHO = OBAH*231*/60. 
DO 15 I = l r N  
F I  = I 
ALPHA = RAf)*SQHT((6~283184*Ff*FREQ*"O)/FMU) 
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I F  ( ALPHA-10 o 1 3 ~ 3 t 6  
3 CALL INTRPL(ALt FMP, ALPHA, FMPO) 

C A L L  XNTHPL(AL0 EP, ALPHA, €PSI) 
FMfJOAS(1) Z FMPO 
EPSILN(1 )  = EPSI/57.2958 
GO TO .15 

6 IF(ALPHA-2Oo) 9, 9, 1 2  
9 FMPOAS(1) = ( ~ O ~ ~ O ~ ~ ~ ~ ~ Y / A L P H A ~ ~ ~ / ( A L P H A * A L P H A ) ) / ( A L P H A * A ~ P H A ~  

EPSILNOI) = ~ O ~ I ~ ~ ~ ~ / A L P H A + ~ O / ( A L P H A * A L P H A ) + ~ ~ ~ ~ ? ~ / ( A L P H A *  

GO TO 1 5  
IALPHA*ALPHA) 

12 FMPOAS(1) = lo/(ALPHA*ALPHAJ 
EPSILN(1 )  = 0 0  

1 5  CONTINUE 
PRINT 81 
00 100 J = l , M  
FJ = J 
OMtGT = FJ*DOMEGT 

00 LiO I = 1,N 
F I  = I 
SIGQ = 0 .  

8 0  SIGG, = SIGQ + ( ( A ( I J * S I N ( E P S I L N ( I ) ) ~ ~ ~ I ) * C O S ( E P S I L N ( I ) ~ ~  
l*COS(FI*OMLGT) + ( A ( I ) * C O S ( E P S I L M ( I ) )  + D ( I ) * S I N ( E P S I L N ( X ) ) )  
2*SIN~FI*OM~GT~~*3rl41593*RAD*AAD*RA~*RAD*RAD*FMPOAS~I~/FMU 

CALCQ = QZERO t SIGQ *i72a1*1w+. 
PRINT 82, OMEGT, DELPF(J)r  DELP(J), CALCQ, TXPQ(J) 

100  CONTINUE 
GO TO 27 

2 FOHMAT(SFl5.8) 
4 FORMAT ( 16F5 o 2 1 
5 FOkMAT(2F15.0, 2110)  
7 FORMAT(BF10.5) 

22 FOHMAT(75Hl RAD FREQ RHO 
‘ 1  FMU 1 

RNOAR ALPHA 23 FORMAT(5SHO QRAR 

81 FOkMAT (75HO OMEGT OELPF OELP 
4 1  FORMAT ( 16FSr4 1 

1 TXPQ 1 
82 FOItMAT(1I.I 5F13.6) 
98 FOHMAT(lt.1 o F13.6, F1302t  F13.6~ F13.2) 
99 F O H M A T ( l t 4  o 4F13.6, F13.8) 

EIdJ 

DENS 

S )  

CALCQ 
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Flow Meter Calibration Subroutine 
SIUFTC CLUHTE 

C M ZUMBRUNNEN 
C PROGRAM TO CALIBRATE FLOW RATE 

SUWOUTINE CLOHTE(M,DOMEGTtXPQtTXPQtQ8AR~JB,FREQ) 

DIMENSION XPQ(JB1, TXPQ(JB1 
SUM = 0 .  
Dl = DOMEGT/(2o*3*141593*FREQ) 
DO 50 I = 1 t M  

XBAR = SUM*FREQ 

DO 60 I = 1 , M  

RETURN 
END 

50 SUM = Dl*XPQ( I )  + SUM 

FACT = QBAR*231o/(60r*XBAR) 

6 0  TXPO(1) = FACT*XPQ(I) 
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Subroutine for Fourier Representation 
BIbFTC FOUHR 

C R Iy ZUMURUNNEN 
C PROGRAM TO COMPUTE FOURIER COEFFICIENTS 

SUtlHOUTINE FOURR(DELX,ACC,M,N,Y,AZERO,A,R,Pt,LIMM,NN) 

1 DIMtNSIOIJ  A("), Y(MM),  PT(MM)  
K = l  
N = l  

7 AAZERO = 0. 
8 DO 9 I = 1,M 
9 AAZERO = Y ( 1 )  + AAZERO 

10 AZEHO = AAZERO*DELX/(2.*3.141~93) 
13 DO 20 J = K,N 

131 ANN = 01 
132 BNN = 0. 
133 FJ = J 

14 DO 18 I = 1 , M  

17 ANN = Y( I ) *COS(FJ*FI *DfLX)  + ANN 
18 ONlJ = Y( I )*SIN(FJ*FI*DELX) + RNN 

16 F I  = I 

19 A (J) = DELX*ANN/3.141593 
20 R ( J )  = DELX*BNN/3.141593 
79 00 84 I = 1,M 

7 9 1  F I  = I 
80 PTT = 0. 
8 1  00 8 3  J = 1,N 
82 FJ = J 
83 PTT = A(J)*COS(DELX*FJ*FI) t B(J)sSIN(DELX*FJ*FI)  + PTT 
84 PT(1 )  = AZERO + PTT 

00 60 I Z l t M  
IF(ARS (PT( I ) -Y( I ) ) -ACC)  60, 6 0 ,  62 

62 IF (N=L  1 6 3 , 1 0 0 ~  100 
6 3 K = N t 1  

N = N + l  
GO TO 1 3  

GO CONTINUE 
GO TO 103  

100 PRINT 1 0 1  
1 0 1  FOHMAT(55HO L I M I T  ON NUMBER OF TERMS HIT 
103 P R I h T  34 
35 PHlhT 40, ( A ( J ) ,  J = 1,N) 
37 PRIIJT 38 
39 PRINT 40, ( U ( J ) r  J = 1 r N )  
34 FOkMAT(55HO =A- COEFFICIENTS FOLLOW, READ ACROSS 
38 FOHMAT (55HO '-b= COEFFICIENTS FOLLOW# READ ACROSS 
40 FOHMAT(1H 5F13.6) 

RETURN 
END 

43 



Linear Interpolation Subroutine 

OILIFTC IIJTRPL 

C R M ZUMURUNNEN 
C PHOGHAM TO PERFORM SIMPLE LItlEAR INTERPOLATION 

SUUHOUTINE INTRPL ( X D  Y e  XPT, YPT) 

DIMCNSION X ( 2 0 1 ) t  Y (201)  
DO 5 J = l t 2 0 1  
IF(XPT-X(J)) 15, 10, 5 

5 CONTINUE 
10 YPT = Y(J) 

GO TO 20 
15 YPT=Y(J-l) + ~ ~ ( J ) ’ Y ~ J - l ) ) * ~ X P T o X ( J - l I ) / ( A R S ( X ( J ) - X ( J ~ l ~ ~ ~  
20 RETURN 
25 ENU 

44 



Sample Computer Output, Run 13 
H A C  FNEb HtlO DENS 

0 01O23O 1.515000 1.939451+ 62 r40000fl 

QUAI1 HIJIjkl( kLWA S 
0 329[iOO 2106.71 160123771 1039 90 

-A- COEFFICIENTS FOLLOW, RLAD ACROSS 
-0 090771 0 OS2643 0 .000051 0 0 1  1715 

0 0 11454 0 022062 0 002571 -Om000172 
0 e 02SM44 -0.042949 0.018362 -0.013272 

-n .002105 

-U- COEFFICIENTS FOLLOW, RLAD ACROSS 
-0 06160 1 

0.012550 
-0 013054 
-0 0 158Gl 

OMEGT 
Om 190400 
0 e 380799 
0 571199 
0.761598 
0 0951998 
1 e 142397 
1 332’197 
1 e523197 
10713596 
1 e903996 
2 094395 
2.284795 
20475194 
2 665594 
2 e855994 
3 046393 
3.236793 
3 427192 
3 6 1  7592 
3 807992 
3 998391 
4 188791 
9 379190 
4 569590 
4 759989 
4 950389 
5.140788 
5 331 188 
5 521S88 
5 7 1  1987 
5 902387 
6 092786 
6 a283186 

-0 mol3390 
-0.009195 
-0 005233 

DELPF 
0 00061)b 

-0 141996 
-0 215146 
-0.131669 
-0 075732 
-0.101549 
*O 135972 
-0 08605C1 
-0 025818 
-0 . 030120 
-0 e021515 
U 028399 
0.079174 
0 077453 
0 e094664 
0 098967 
0 107573- 
0 m4475O4 
0 e051635 
0 e 137694 
0 1721 17 

-0 025818 
0 eo68847 
0 033563 

-0 032702 
0 . 025L)lO 
0 005163 

-0 006805 
0.021515 

-0 a010327 

0 0 12909 
0.000000 

0 . 002582 

-0 032335 
0 030602 
0 e 024942 

OELP 
Om008606 

-0 141997 
-0.215146 
-0 e 131670 
-Om1375731 
-0.101549 
-0 135972 
-0 e 0860 59 
-0 0025818 
-0 e 030 120 
-0 02 1515 

0 028399 
Om079174 
Om077453 
0 094664 
0 a 098967 
Om 107573 
Om 447SO4 
Om 051635 
0 e 137694 
0 1721 17 

-0.025818 
0 068847 
0.033563 

-0  032702 
0.025818 
0 005164 

-Om006885 
0.021515 

-0 010327 
0 002582 
0 mu12909 
0.000000 

01008173 
-0 003501 
-0 021247 

CALCO 
2 139467 
1 983629 
1043207S 
0 964844 
0 688827 
0 0482959 
o . 138370 
-0.i57399 
-0 31  1205 
-0 359645 
-0 e 467236 
-00450314 
-0 343736 
-0.113584 

0 03077U 
0 331 172 
0 433788 
1.2184+53 
1 e912585 
1.927741 
2.431819 
2 479912 
2 m4600Ol 
2 556875 
2 467092 
2 369633 
2 380316 
2 0281528 
2 266779 
2.224719 
2 165833 
2 155209 
2.141550 

0 015436 
-0.018710 

0.002716 

-0.019U81 
0.019456 
OmOlBU49 

TXPQ 
2.061616 
1 e616955 
1 172293 
0 929749 
0 809325 
0 404239 
0 363MlS 
0 3 226374 

-0 040424 
-0.161696 
-0 323391 
-0 040424 
-0 064678 
-0 080848 

0 080848 
0 242543 
0 646782 
1 293564 
1.455260 
1 899923 
2 263738 
2.304162 
2.425433 
2.328416 
2.304162 
2 263738 
2.425433 
2 223314 
2 182890 
2 263738 
2 021194 
2 182890 
2 102042 
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